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SPECIAL CLASS OF SOLUTIONS

OF THE KINETIC EQUATION OF A BUBBLY FLUID

UDC 532.591+517.948G. Russo,1 V. M. Teshukov,2 and A. A. Chesnokov2

A new class of solutions is constructed for the kinetic model of bubble motion in a perfect fluid
proposed by Russo and Smereka. These solutions are characterized by a linear relationship between the
Riemann integral invariants. Using the expressions following from this relationship, the construction
of solutions in the special class is reduced to the integration of a hyperbolic system of two differential
equations with two independent variables. Exact solutions in the class of simple waves are obtained,
and their physical interpretation is given.
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Introduction. A kinetic approach has been developed [1–5] to simulate the motion of gas bubbles in a
perfect fluid taking into account the effects of their collective interaction. The construction of the equations of
motion is based on the calculation of the fluid kinetic energy, which is represented as the quadratic form of the
bubble velocity [6], whose coefficients are determined by the fluid flow potential in the region between bubbles.
Assuming that all bubbles are identical and are solid imponderable spheres, Russo and Smereka [3] approximately
calculated the kinetic energy and Hamiltonian of bubble motion by asymptotic expansion of the solution of the
Laplace equation in a small parameter (the ratio of the bubble radius to the average separation between the bubbles).
In [3], the kinetic equation describing the evolution of the one-particle distribution was obtained using a system
of Hamilton’s ordinary differential equations for the bubble coordinates and momenta and a method of deriving
Vlasov’s equation.

The characteristic properties of the Russo–Smereka kinetic model [3] for the case of one space variable are
studied in [7], where hyperbolicity conditions are formulated and Riemann integral invariants and infinite series of
conservation laws are found. The exact solutions of the kinetic model in the class of simple waves propagating over
a specified, spatially homogeneous, stationary background are obtained in [7, 8].

In the present paper, we propose a new method for constructing solutions of integrodifferential equations
that admit a formulation in terms of Riemann invariants. This method is used to find a wide class of solutions of
the Russo–Smereka kinetic equation that is described by a system of first-order hyperbolic differential equations.

1. Mathematical Model. In the one-dimensional case, the Russo–Smereka kinetic equation in dimension-
less variables is written as follows [3, 7]:

f1
t + (p− j)f1

x + pjxf
1
p = 0, j(t, x) =

∞∫
−∞

pf1 dp. (1)

Here f1(t, x, p) is the one-particle distribution function for the number of bubbles in the phase space (x, p) of
coordinates and momenta, t is time, and j is the first moment of the distribution function. It is assumed that f1

decreases rapidly at infinity or is finite over the variable p.

1University of Catania, Catania 95125, Italy. 2Lavrent’ev Institute of Hydrodynamics, Siberian Division, Rus-
sian Academy of Sciences, Novosibirsk 630090; chesnokov@hydro.nsc.ru. Translated from Prikladnaya Mekhanika i
Tekhnicheskaya Fizika, Vol. 46, No. 2, pp. 33–43, March–April, 2005. Original article submitted August 25, 2004.

176 0021-8944/05/4602-0176 c© 2005 Springer Science+ Business Media, Inc.



In the present paper, we consider the solutions of Eq. (1) in the class of functions that are piecewise continuous
in the variable p and have a limited carrier:

f1(t, x, p) = f(t, x, p)(θ(p− p1(t, x))− θ(p− p2(t, x))). (2)

Here θ is a Heaviside function, p1(t, x) and p2(t, x) are the boundaries of the interval in the variable p, outside
which the distribution function f1(t, x, p) is identically equal to zero, and f(t, x, p) is a nonnegative function which
is continuously differentiable on the set {(t, x, p) | t ≥ 0, x ∈ R, p ∈ (p1, p2)}. Substituting the representation of
the solution (2) into the kinetic equation (1), we obtain the following integrodifferential system for the quantities
f(t, x, p), p1(t, x), and p2(t, x):

∂f

∂t
+ (p− j)

∂f

∂x
+ p

∂j

∂x

∂f

∂p
= 0 (x ∈ R, p ∈ (p1, p2)), j(t, x) =

p2∫
p1

pf dp; (3)

∂p1

∂t
+ (p1 − j)

∂p1

∂x
− p1

∂j

∂x
= 0,

∂p2

∂t
+ (p2 − j)

∂p2

∂x
− p2

∂j

∂x
= 0. (4)

The goal of this work is to develop methods for constructing solutions of integrodifferential equations and to obtain
and analyze a new class of solutions of Eqs. (3) and (4).

We note that in the particular case where f = f0 = const [x ∈ R, p ∈ (p1, p2)], the solution of system (3),
(4) reduces to the integration of the two differential equations

∂p1

∂t
+

(
p1 + f0

3p2
1 − p2

2

2

)∂p1

∂x
− f0p1p2

∂p2

∂x
= 0,

∂p1

∂t
+ f0p1p2

∂p1

∂x
+

(
p2 + f0

p2
1 − 3p2

2

2

)∂p2

∂x
= 0.

(5)

The solutions of the kinetic equations (1) with a piecewise constant distribution function [including step-type
distributions that can be reduced to Eqs. (5)] are studied in [9].

Below, we shall consider the class of solutions with a nontrivial distribution function f(t, x, p) 6= const, which
also reduces to integrating a system of two differential equations.

2. Riemann Invariants. Using the lemma given below, we prove the existence of a function R(t, x, p)
that, like the distribution function f(t, x, p), is conserved along the trajectories

dx

dt
= p− j,

dp

dt
= pjx (6)

on the solutions of the kinetic equation (3).
Lemma 1. Let f(t, x, p), p1(t, x), p2(t, x), j(t, x), and n(t, x) be arbitrary differentiable functions and let

the derivatives ft, fx, and fp satisfy Hölder’s condition in the variable p. Then, the following equality is valid:

D
(n− 1

p
+

p2∫
p1

f ′ dp′

p′ − p

)
=
nt + ((1− n)j)x

p
+

p2∫
p1

D′f ′ dp′

p′ − p

+
(p2t + (p2 − j)p2x − p2jx)f2

p2 − p
− (p1t + (p1 − j)p1x − p1jx)f1

p1 − p
+

∂

∂x

(
n−

p2∫
p1

f ′ dp′
)
. (7)

Here we use the notation of the functions f = f(t, x, p), f ′ = f(t, x, p′), and fi = f(t, x, pi) and the operators
D = ∂t + (p− j) ∂x + pjx ∂p, and D′ = ∂t + (p′ − j) ∂x + p′jx ∂p′ .

The proof is performed by direct calculations using the formulas for differentiating integrals with variable
limits and the formulas for differentiating singular integrals [10]:

∂

∂ξ

b∫
a

ϕ(τ) dτ
τ − ξ

=
ϕ(a)
a− ξ

− ϕ(b)
b− ξ

+

b∫
a

ϕ′(τ) dτ
τ − ξ

.
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We introduce the notation

R(t, x, p) =
n(t, x)− 1

p
+

p2∫
p1

f(t, x, p′) dp′

p′ − p
, n(t, x) =

p2∫
p1

f(t, x, p) dp. (8)

Note that a consequence of system (3), (4) is the equality

nt + ((1− n)j)x =

p2∫
p1

(ft + (p− j)fx + pjxfp) dp+ (p2t + (p2 − j)p2x − p2jx)f2 − (p1t + (p1 − j)p1x − p1jx)f1. (9)

Thus, if the functions f(t, x, p), p1(t, x), and p2(t, x) are a solution of system (3), (4), then, by virtue of Eqs. (7),
(8), and (9), the quantity R(t, x, p) satisfies the equation

Rt + (p− j)Rx + pjxRp = 0.

The functions f and R that are conserved along the trajectories (6) will be called Riemann invariants. In
greater detail, the characteristic properties of the Russo–Smereka kinetic equation and its reduction to Riemann
integral invariants using Eulerian–Lagrangian coordinates are considered in [7].

3. Class of Solutions with Functionally Dependent Riemann Invariants. We consider solutions
with a functional relationship between the quantities f(t, x, p) and R(t, x, p). Let f = ψ(R), where ψ is an arbitrary
differentiable function. Then, by virtue of (8), for f(t, x, p) = f̄(p1, p2, p), we have the nonlinear singular integral
equation

f = ψ
(n− 1

p
+

p2∫
p1

f ′ dp′

p′ − p

)
. (10)

Next, we assume the validity of the inequalities

0 < p1 ≤ p ≤ p2 <∞.

If Eq. (10) is solved and the function f̄(p1, p2, p) is found, then, calculating the first moment of the function

j(t, x) = j̄(p1, p2) =

p2∫
p1

pf̄(p1, p2, p) dp

and substituting it into (4), we obtain the following closed system of differential equations for the unknowns p1(t, x)
and p2(t, x):

p1t + (p1 − j̄)p1x − p1(j̄(p1, p2))x = 0, p2t + (p2 − j̄)p2x − p2(j̄(p1, p2))x = 0. (11)

Let us show that the function f(t, x, p) satisfies Eq. (3) if p1 and p2 are a solution of system (11). Applying the
differential operator D = ∂t + (p− j)∂x + pjx∂p to both sides of equality (10), we obtain

Df = ψ′RD
(n− 1

p
+

p2∫
p1

f ′ dp′

p′ − p

)
.

Since p1 and p2 satisfy Eqs. (11), using (7) and (9), the last relation is reduced to the homogeneous singular integral
equation

ϕ− ψ′R

p2∫
p1

ϕ′ dp′

p′ − p
= 0, (12)

where ϕ = pDf , D′ = ∂t +(p′− j)∂x +p′jx∂p′ , and ϕ′ = p′D′f ′. Equation (3) is satisfied if (12) has only the trivial
solution ϕ = pDf = 0. The uniqueness conditions for the solution of Eq. (12) are formulated in [11]. Verification
of these conditions completes the construction of the special class of solutions of the Russo–Smereka kinetic model
described by system (11) with functionally dependent Riemann invariants.
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4. Solutions with Linearly Dependent Riemann Invariants. We obtain the class of solutions of the
integrodifferential system (3), (4) for the case of a linear relationship between the invariants f and R. Let

f = ψ(R) = a(R− b), (13)

where a and b are constants. Without loss of generality, we set a−1 = −π cot µπ (0 < µ < 1 and µ 6= 1/2). Then,
for the function f , the following linear singular integral equation arises:

fπ cot µπ +

p2∫
p1

f ′ dp′

p′ − p
=

1− n

p
+ b. (14)

According to the general theory of singular integral equations [11], Eq. (14) is uniquely solvable in the class
of functions that satisfy Hölder’s condition at the internal points of the interval (p0, p1), and are bounded at one of
the ends of this interval, and unbounded at the other end.

Employing the methods developed in [11] and tabulated formulas for singular integrals (see [12])
p2∫

p1

(p′ − p1

p2 − p′

)µ dp′

p′ − p
=

π

sinµπ
− π cot µπ

(p− p1

p2 − p

)µ

,

p2∫
p1

1
p′

(p′ − p1

p2 − p′

)µ dp′

p′ − p
=

π

sinµπ

(p1

p2

)µ 1
p
− π cot µπ

p

(p− p1

p2 − p

)µ

,

we find the solution of Eq. (14) in explicit form

f =
sinµπ
π

(1
p

(p2

p1

)µ

(1− n) + b
)(p− p1

p2 − p

)µ

(15)

(we chose the class of solutions bounded at the point p = p1 and unbounded at the point p = p2).
Integration of (15) over p yields the following expression for the bubble concentration:

n(t, x) = n̄(p1, p2) = 1− (p1/p2)µ(1− µb(p2 − p1)). (16)

Substitution of (16) into (15) yields the resulting expression for the distribution function in the special class of
solutions characterized by the linear relationship (13) between the Riemann invariants f and R:

f =
sinµπ
π

(1− µb(p2 − p1)
p

+ b
)(p− p1

p2 − p

)µ

. (17)

Using the obtained distribution function f , we calculate its first moment j(t, x)

j = j̄(p1, p2) = µ(p2 − p1)(1 + (1 + µ)bp1/2 + (1− µ)bp2/2) (18)

and reduce the solution of the integrodifferential system (3), (4) in the special class to the integration of the two
differential equations
∂p1

∂t
+

(
(1 + µ+ µbp1)p1 − µ(p2 − p1)

(
1 + b

p1 + p2

2
+ µb

3p1 − p2

2

))∂p1

∂x
− µp1

(
1− µb(p2 − p1) + bp2

)∂p2

∂x
= 0,

∂p2

∂t
+ µp2

(
1− µb(p2 − p1) + bp1

)∂p1

∂x
(19)

+
(
(1− µ− µbp2)p2 − µ(p2 − p1)

(
1 + b

p1 + p2

2
+ µb

p1 − 3p2

2

))∂p2

∂x
= 0.

The propagation velocities of the characteristics dx/dt = k = k1,2 of system (19) are found from the quadratic
equation

(k + j)2 − (1− µb(p2 − p1))((1 + µ)p1 + (1− µ)p2)(k + j) + (1− µb(p2 − p1))p1p2 = 0. (20)

Here the quantity j is defined by formula (18). Equations (19) are hyperbolic if the following inequality is satisfied:

((1 + µ)p1 + (1− µ)p2)2 > 4p1p2/(1− µb(p2 − p1)). (21)
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The requirement of nonnegativity of f and the constraint on the bubble concentration n < 1 corresponding
to the applicability of the kinetic model (1) (see [3, 7]) lead to the inequality

(θ(b)− 1)bp2 < 1− µb(p2 − p1). (22)

The regions in which inequalities (21) and (22) are satisfied for µ = 0.4 and b = ∓0.3 are shown by hatching
in Fig. 1. In the case of negative values of b (Fig. 1a), the shaded region is bounded by curve 1 [a consequence
of inequality (21)], the straight line p1 = 0, and straight line 2 [corresponds to constraint (22)]. The condition
of nonnegativity of the distribution function (22) is satisfied automatically for b ≥ 0. The region in which the
hyperbolicity conditions are satisfied for positive values of the parameter b is shown by hatching in Fig. 1b. The
hyperbolicity region is bounded by the straight line p1 = 0 and curve 1, at whose points (21) becomes equality.

We have shown that the special class of solutions is described by the system of differential equations (19)
dependent on the parameters µ and b. The system is considerably simplified for b = 0. In this case, Eqs. (19)
become

∂p1

∂t
+ ((1 + 2µ)p1 − µp2)

∂p1

∂x
− µp1

∂p2

∂x
= 0,

∂p2

∂t
+ µp2

∂p1

∂x
+ (µp1 + (1− 2µ)p2)

∂p2

∂x
= 0.

(23)

The propagation velocities of the characteristics of Eqs. (23) are given by the formulas

k1,2 =
1 + 3µ

2
p1 +

1− 3µ
2

p2 ∓
1
2

√
(1 + µ)2p2

1 + (1− µ)2p2
2 − 2(1 + µ2)p1p2

and the hyperbolicity condition (21) has the form

(1− µ)2p2 > (1 + µ)2p1.

We note that inequality (22) is satisfied automatically.
Let us reduce the differential equations (19) to Riemann invariants. For the propagation velocity of the

characteristics of the kinetic equation (1), Teshukov [7] obtained the equation

χ(k + j) = 1− n+ (k + j)

p2∫
p1

f dp

(p− j − k)2
= 0. (24)

Of interest are solutions in which the inequalities 0 < n < 1 and f ≥ 0 are satisfied. In this case, the characteristic
equation does not have real roots k outside the interval [p1 − j, p2 − j]. However, the previous results in the
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special class of solutions show that if the equations are hyperbolic, real roots k1 and k2 exist inside this interval:
p1 − j < k1 < k2 < p2 − j. To give meaning to Eq. (24) in the interval in which the quantity p − j − k vanishes,
we continue the function χ to the complex region and calculate the limiting values of the function of the complex
argument χ(z) from the upper and lower semi-planes on the segment [p1, p2]:

χ±(p) = 1− n+ p2
( f1
p1 − p

− f2
p2 − p

+

p2∫
p1

f ′p dp
′

p′ − p

)
± πip2fp.

Direct calculations show that at the points

p = k1,2 + j =
1− µb(p2 − p1)

2

(
(1 + µ)p1 + (1− µ)p2 ∓

√
((1 + µ)p1 + (1− µ)p2)2 −

4p1p2

1− µb(p2 − p1)

)
[ki are roots of the quadratic equation (20)], the real and imaginary parts of the complex functions χ±(p) vanish.
We note that the condition Im {χ(ki + j)} = 0 is equivalent to the equality fp = 0 for p = ki + j. Therefore, at the
indicated points, the characteristic equation (24) is satisfied in the sense of the principal value.

According to (8), the Riemann invariants corresponding to the characteristic values p = ki + j (i = 1, 2) are
defined by the formulas

ri =
n− 1
ki + j

+

p2∫
p1

f dp

p− j − ki
.

Taking into account (16) and (17), after simple calculations we obtain

ri = b− cosµπ
(
b+

1− µb(p2 − p1)
ki + j

)(ki + j − p1

p2 − j − ki

)µ

. (25)

Thus, the system of differential equations (19), which describes the special class of solutions, is reduced to the
Riemann invariants

∂r1
∂t

+ k1
∂r1
∂x

= 0,
∂r2
∂t

+ k2
∂r2
∂x

= 0.

5. Simple Waves. Solutions of the form f(t, x, p) = f̂(k(t, x), p) and pi(t, x) = p̂i(k(t, x)), where k(t, x) is
an arbitrary smooth function, will be called the simple waves of the system of integrodifferential equations (3) and
(4). Let us construct a simple wave for the special class of the solutions. This problem reduces to finding solutions
of the form pi(t, x) = p̂i(k(t, x)) to system (19). From the common properties of simple waves, it follows that one of
the Riemann invariants (25) remains constant in the wave region. Let a wave propagate at a characteristic velocity
k = k1 (k1 < k2); then, the Riemann invariant r2 = const in the simple wave. Obtaining this solution reduces to
determining the functions p1 and p2 from the final relations

r2(p1, p2) = r20 = const, k1(p1, p2) = k (26)

and integrating the equation

kt + kkx = 0.

For simplicity and illustration, we consider the special class of solutions for the case b = 0 [system (23)] and
construct a self-similar simple wave that corresponds to the choice k(t, x) = x/t. Introducing the notation

h = p2 + p1, l = p2 − p1, ξ = x/t (27)

and using (27), we bring Eqs. (26) to the form

h− 3µl − α = 2ξ, α = l
√

1 + µ2 − 2µh/l ; (28)

1
h− µl + α

( (1− µ)l + α

(1 + µ)l − α

)µ

= −r′20
(
r′20 =

r20
2 cosµπ

)
. (29)

From formulas (28), α and h can be expressed as functions of l and ξ:

α(l, ξ) = −µl + l
√

1− 4µ2 − 4µξ/l , h(l, ξ) = 2ξ + 2µl + l
√

1− 4µ2 − 4µξ/l .
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Then, formula (29) is the closing relation for the determination of the relation l = l(ξ) from the equation

F (l, ξ) =
( (1− µ)l + α(l, ξ)

(1 + µ)l − α(l, ξ)

)µ

+ r′20(ξ + µl + α) = 0. (30)

The results of an analysis of the unique solvability of the equation F (l, ξ) = 0 are given below.
For any ξ from the interval (ξ1, ξ2), the equation F (ξ, l) = 0 has a unique root l > 0 if one of the following

conditions is satisfied:

1) 0 < µ ≤ 1√
5
, r′20 < 0, ξ1 =

1
r′20

( µ

1− µ

)1−µ

, ξ2 = 0;

2)
1√
5
< µ < 1, r′20 < 0, ξ1 =

1
r′20

( µ

1− µ

)1−µ

, ξ2 =
5µ2 − 1

r′20(1− µ2)

(1− µ

1 + µ

)µ

;

3) 0 < µ <
1
3
, r′20 < 0, ξ1 = 0, ξ2 = − 1

2r′20

(1− 2µ
µ

)µ

;

4)
1
3
≤ µ <

1√
5
, r′20 < 0, ξ1 = 0, ξ2 = − 1− 5µ2

r′20(1− µ2)

(1− µ

1 + µ

)µ

.

.
For ξ ∈ (ξ1, ξ2), the above conditions guarantee the validity of the inequalities

F (l1, ξ) > 0, F (l2, ξ) < 0, Fll > 0, (31)

which allow one to uniquely solve the closing equation (30) and determine the function l = l(ξ) in the interval
(ξ1, ξ2). However, the relation l = l(ξ) is difficult to write in explicit form; therefore, to solve the equation
F (l, ξ) = 0 numerically, we use the Newton iterative process li+1(ξ) = li(ξ) − F (li, ξ)/F ′l (li, ξ), whose convergence
is guaranteed by inequalities (31).

From the known functions l(ξ) and h(ξ), we obtain the quantities p1(ξ) = (h − l)/2 and p2(ξ) = (h + l)/2.
According to (17), the distribution function for b = 0 has the form

f =
sinµπ
πp

(p− p1

p2 − p

)µ

.

As a result, we constructed a particular solution of the kinetic equations (3) and (4).
As an example, we consider a self-similar simple wave with parameters µ = 0.4, b = 0, and r′20 = −(µ/(1

− µ))1−µ ≈ −0.784 which is defined in the interval ξ ∈ (a1, a2) and adjoin the spatially homogeneous, stationary
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distributions fi(p) = f̂(ai, p) along the characteristics ξ = ai (i = 1, 2). A solution of the simple-wave type defined
by relation (26) exists in any interval (a1, a2) ⊂ (ξ1, ξ2) in which

ξ1 =
1
r′20

( µ

1− µ

)1−µ

= −1, ξ2 = − 1− 5µ2

r′20(1− µ2)

(1− µ

1 + µ

)µ

≈ 0.2164.

This follows from the above analysis of the unique solvability of the closing equation (30) (see conditions 1 and 4,
which correspond to this choice of the parameters µ and r′20). For determinacy, let a1 = −0.9 and a2 = 0. As
follows from (16) and (18), the bubble concentration in the fluid and the first moment of the distribution function
have the form n = 1− (p1/p2)µ and j = µ(p2− p1), respectively. Plots of these functions are given in Figs. 2 and 3.
As the self-similar variable ξ decreases, the bubble concentration n increases. In this case, the moment j, which is
proportional to the differences p2 and p1, also increases, i.e., the distribution-function carrier is extended. Plots of
the function f = f̂(ξ, p) for fixed values of ξ are given in Fig. 4. The dashed and dot-and-dashed curves show the
distributions fi(p) to which the simple wave f = f̂(ξ, p) is continuously adjacent along the characteristics ξ = ai.
The distribution function f̂(ξ, p) vanishes [at the points (ξ, p1(ξ)) and tends to infinity as (ξ, p) → (ξ, p2(ξ)). At the
internal points of the interval (p1(ξ), p2(ξ)), the derivative f̂p(ξ, p) vanishes [at the points pmax = k1+j(ξ) = ξ+j(ξ)
and pmin = k2 + j(ξ)]. We note that p1(ξ) → +0 and n(ξ) → 1 − 0 as ξ → ξ1 + 0. At the point (ξ, pmax(ξ)), the
values of the function f̂(ξ, p) increase with decrease in the self-similar variable ξ.

In a coordinate system moving together with the wave, the particle trajectory is defined, according to (6),
by the following system of ordinary differential equations:

dξ

dt
=
p− j − ξ

t
,

dp

dt
=
pj′(ξ)
t

. (32)

Figure 5 gives the results of numerical integration of system (32) in parametric form on the plane of variables
(p, ξ) (the arrows show the direction of the particle motion). Bubbles that penetrate into the simple-wave region
through the front ξ = a1 and have small momenta [p1(a1) < p < p∗ ≈ 1.25] perform rotational motion in the wave
and return to the line ξ = a1. Such particle behavior is due to the fact that the quantity p− j−ξ, which determines
the sign of the derivative ξ′(t), changes sign in the simple-wave region. This change in sign takes place on the line
p = pmax(ξ) = ξ + j(ξ), at whose points, f̂p = 0. The constructed solution describes motion with a critical layer
since on the line p = pmax(ξ) in the simple-wave region, the particle velocity p− j coincides with the local velocity
of the wave propagating at speed ξ. Bubbles that at ξ = a1 have momenta p > p∗ leave the wave region through
the front ξ = a2. Particles with momenta p1(a2) < p < j(a2) + a2 [for a2 = 0, p1(a2) ≈ 0.3612 and j(a2) ≈ 0.7233]
penetrate into the simple-wave region through the characteristic ξ = a2 and leave it through the front ξ = a1. We
note that all bubbles that arrive at the line ξ = a1 have close momenta p ∈ (p1(a1), pmax(a1)). In particular, for
a1 = −0.9, we have p1(a1) ≈ 0.0431 and pmax(a1) ≈ 0.0710. This explains the appreciable increase in the values of
the distribution function f̂(ξ, p) at the points (ξ, pmax(ξ)), the displacement of pmax(ξ) to p = p1(a1) as ξ → a1 (see
Fig. 4), and the increase in the bubble concentration n in the simple-wave region with decrease in the variable ξ.
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Conclusions. A method for constructing special classes of exact solutions was proposed for integrodiffer-
ential models that admit a formulation in terms of Riemann invariants. Seeking solutions from the special class is
considerably simplified compared to the general case and reduces to integrating systems of differential equations.
This method was used to obtain a new wide class of solutions for the kinetic model of a bubbly fluid proposed
by Russo and Smereka. The solutions of the special class are specified by a system of two differential equations
dependent on two arbitrary parameters. In the special class, simple waves are studied and features of the solutions
are analyzed. The case of a self-similar simple wave is considered in greater detail.
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